Modeling Path Effects in Three - Dimensional Basin Structures

نویسندگان

  • ROBERT W. GRAVES
  • ROBERT W. CLAYTON
چکیده

Path effects for seismic wave propagation within three-dimensional (3-D) basin structures are analyzed using a reciprocal source experiment. In this experiment, a numerical simulation is performed in which a point source is excited at a given location and then the wave field is propagated and recorded throughout a 3-D grid of points. Using the principle of reciprocity, source and receiver locations are reversed. This allows the modeling of path effects into a particular observation site for all possible source locations using only one simulation. The numerical technique is based on the use of paraxial extrapolators and currently tracks only acoustic waves. However, the method is capable of handling arbitrary media variations; thus, effects due to focusing, diffraction, and the generation of multiple reflections and refractions are modeled quite well. The application of this technique to model path effects for local earthquakes recorded at stations in the Los Angeles area of southern California indicates the strong influence of the 3-D crustal basins of this region on the propagation of seismic energy. The modeling results show that the Los Angeles, San Fernando, and San Gabriel basins create strong patterns of focusing and defocusing for paths into these stations from various source locations. These simulations correlate well with earthquake data recorded at both stations. By comparing these calculations with earthquake data, we can begin to evaluate the importance of these basin effects on observed patterns of strong ground motions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional numerical modeling of score hole in rectangular side weir with finite volume method

Local scouring in the downstream of hydraulic structures is one of the important issues in river and hydraulic engineering, which involves a lot of costs every year, so the prediction of the rate of scour is important in hydraulic design. Side weirs are the most important of hydraulic structures that are used in passing flow. This study investigate the scouring due to falling jet from side weir...

متن کامل

A simple form of MT impedance tensor analysis to simplify its decomposition to remove the effects of near surface small-scale 3-D conductivity structures

Magnetotelluric (MT) is a natural electromagnetic (EM) technique which is used for geothermal, petroleum, geotechnical, groundwater and mineral exploration. MT is also routinely used for mapping of deep subsurface structures. In this method, the measured regional complex impedance tensor (Z) is substantially distorted by any topographical feature or small-scale near-surface, three-dimensional (...

متن کامل

Three-dimensional Magnetotelluric Modeling of data from Northeast of Gorgan Plain

Magnetotelluric measurements have been conducted in the period range of 0.005-128 s along five parallel east-west directed profiles including 85 sites totally in the north-eastern part of Gorgan Plain, Golestan Province, North of Iran; with the aim of exploring iodine. Distortion and dimensionality analysis of data imply the existence of a north-south elongated two-dimensional model with some l...

متن کامل

Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation

In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...

متن کامل

Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell

In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters,   complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005